WSD Mulesing Powder Wound Dressing

WSD Agribusiness Pty Ltd

Chemwatch: 32-6556
Version No: 3.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>WSD Mulesing Powder Wound Dressing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Wound dressing after marking, mulesing and de-horning. Not to be used for any purpose other than that stated on the label. |

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>WSD Agribusiness Pty Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>7 Koojan Avenue South Guildford 6055 WA Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 8 9321 2888</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 8 9479 4088</td>
</tr>
<tr>
<td>Website</td>
<td>Not Available</td>
</tr>
<tr>
<td>Email</td>
<td>contact@wsdagribusiness.com</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

| NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. |
| CHEMWATCH HAZARD RATINGS |

Continued...
Flammability	Toxicity	Body Contact	Reactivity	Chronic
1 | 2 | 0 | 0 | 2

0 = Minimum
1 = Low
2 = Moderate
3 = High
4 = Extreme

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5</td>
<td>Chronic Aquatic Hazard Category 3</td>
</tr>
</tbody>
</table>

Legend:
1. Classified by Chemwatch;
2. Classification drawn from HSIS;

Label elements

GHS label elements Not Applicable

SIGNAL WORD NOT APPLICABLE

Hazard statement(s)

H412 Harmful to aquatic life with long lasting effects

Precautionary statement(s) Prevention

P273 Avoid release to the environment.

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>333-41-5</td>
<td>1.5</td>
<td>diazinon</td>
</tr>
<tr>
<td>121-21-1</td>
<td>0-0.1</td>
<td>pyrethin I</td>
</tr>
<tr>
<td>121-29-9</td>
<td>0-0.1</td>
<td>pyrethin II</td>
</tr>
<tr>
<td>51-03-6</td>
<td>0.08</td>
<td>piperonyl butoxide</td>
</tr>
</tbody>
</table>

Balance other ingredients determined not to be hazardous

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin or hair contact occurs:

- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.
Ingestion

If swallowed do NOT induce vomiting.
If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
Observe the patient carefully.
Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Atropine sulfate, usually in doses of 600 microgram may be given intravenously, intramuscularly, or subcutaneously to control the muscarinic effects of choline esterase inhibitors. Supportive treatment may be required.

MARTINDALE: The Extra Pharmacopoeia, Twenty-ninth Edition

While other antimuscarinic agents (e.g., scopolamine) can counteract the effects of cholinesterase inhibitors, their inherent toxic effects in patients who do not have cholinesterase inhibitor poisoning have led to their rejection in favor of atropine. Glycopyrrolate in doses of 1-2 mg. I.V., (0.025 mg/kg in children) has been suggested as an alternative to atropine, and is said to have fewer CNS side effects. However, its use has not been extensively evaluated.

Atropine works by competitively occupying muscarinic receptor sites, thus reducing the effects of excessive acetylcholine on these sites brought about by cholinesterase inhibition.

Atropine is not thought to have significant effect on nicotinic receptors, and thus does not counteract fasciculations, weakness, or flaccid paralysis. Thus, even when given sufficient doses of atropine, patients may need artificial ventilation, sometimes for weeks.

A number of authors have recommended the “atropine challenge” as an aid to diagnosis. When given to a normal person who has not been exposed to cholinesterase inhibitors, a 2 mg dose of atropine (0.025-0.050/kg in pediatric cases) causes:
- A dry mouth.
- An increase in heart rate of about 35 beats/minute (which is usually not noticed by the recipient) within 3-5 minutes of an I.V. dose, and a maximal increase in heart rate of about 35-45 beats/minute with I.M. or autoinjector administration, respectively, within about 35-45 minutes (the longer being with I.M. injection).
- Blurred near-vision.
- Dry, hot skin.
- Miosis (pupillary dilation).

Most of these effects will dissipate within 4-6 hours, except blurred near-vision which may persist for 24 hours.

It has been suggested that when these physiological changes do not occur with this dose (sometimes referred to as an atropine challenge), this is indicative of cholinesterase inhibitor toxicity.

Cautions

- If miosis (pupillary constriction) is due to direct conjunctival vapor exposure, it is relatively unresponsive to parenteral atropine. Although, it does respond to topical administration.
- In 2-13% of cases of cholinesterase inhibitor toxicity, mydriasis (pupillary dilatation) --- rather than miosis (pupillary conraction), and tachycardia --- rather than bradycardia (3-77% of cases), may be a presenting signs.
- One author points out that this strategy has never been empirically tested and may not be very sensitive or specific (Parenteral atropine is not generally recommended for those whose sole manifestation of toxicity is miosis (pupillary constriction).
- Some cases of mild to moderate poisonings may improve with these doses of atropine. Thus, signs of atropinization do not always exclude the presence of cholinesterase inhibitor toxicity.

In approximate order of preference, the following routes of administration can be used for the administration of atropine

1. Intravenous: bolus, followed by I.V. drip.
2. Intraosseous: (American Heart Association 2005) bolus, followed by continuous infusion.
3. Military MARK I atropine autoinjector: Although intravenous injection is the preferred route of administration, use of the autoinjector may be more practical in the field, where it can be rapidly administered even through clothing.) Blood levels are achieved more rapidly than by other forms of IM injection. Note that each MARK I kit contains an atropine autoinjector, containing 2 mg of atropine plus another autoinjector containing 600 mg of 2-PAM. Paediatric atrope autoinjector syringes are available in 0.5 mg and 1 mg sizes.
4. Intramuscular: Research for this Case Study did not turn up any comparisons of intramuscular with intravenous routes of atrope administration.
5. Inhalation: by nebulised inhalation or via the intratracheal route. The intratracheal route can be used, but absorption is notably less complete and less reliable than the intravenous or intraosseous routes, which are preferred. The optimal intratracheal dose is unknown, but is typically administered in an amount 2-2½ times the intravenous dose. The American Heart Association recommends that the dose be diluted in 5-10 ml water or normal saline. American Heart Association 2005; American Heart Association 2005)
6. Oral: use has been reported after I.V. administration became unnecessary.
7. Ophthalmic: Anticholinergic eye drops (e.g., atropine or homatropine) have been recommended for severe eye pain caused by miosis (pupillary constriction), and secondary reflex nausea and vomiting, but may result in blurred vision. However, one author questions whether there is enough evidence to recommend this practice.

Tachycardia should not be used as an end-point, because it sometimes is a nicotinic manifestation of toxicity.

Resolution of miosis [Miosis has been defined as pupillary diameter of <3 mm in the dark, along with sluggish or absent response to light] should not be used as an end-point, because:
- Miosis (pupillary constriction) from systemic exposure may be a late finding.
- When miosis pupillary constriction) is present, it may be resistant to systemic atropine therapy.
- Miosis (pupillary constriction) may reflect only localized opthalmic exposure to vapor without systemic effects.
- Pupils are of normal size in a significant minority of poisoned patients (20% in one series).
- Toxic patients may present with mydriasis (pupillary dilatation) due to occasional dominance of nicotinic effects from cholinesterase inhibitors.

Case Studies in Environmental Medicine (CSEM) Cholinesterase Inhibitors Including Insecticides and Chemical Warfare Nerve Agents Part 4: The Cholinergic Toxicology; Section 11: Management of the Cholinergic Toxicidrome Management Strategy 3: Medications Atropine Agency for Toxic Substance and Disease Registry ATSDR (USA)
SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Advice for firefighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- **DO NOT** approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

- Solid which exhibits difficult combustion or is difficult to ignite.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion.
- Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can also be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-metre/sec.
- May emit poisonous fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills

- Environmental hazard - contain spillage.
 - Remove all ignition sources.
 - Clean up all spills immediately.
 - Avoid contact with skin and eyes.
 - Control personal contact with the substance, by using protective equipment.
 - Use dry clean up procedures and avoid generating dust.
 - Place in a suitable, labelled container for waste disposal.

Major Spills

- Environmental hazard - contain spillage.
 - **CAUTION:** Advise personnel in area.
 - Alert Emergency Services and tell them location and nature of hazard.
 - Control personal contact by wearing protective clothing.
 - Prevent, by any means available, spillage from entering drains or water courses.
 - Recover product wherever possible.
 - **IF DRY:** Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. **IF WET:** Vacuum/shovel up and place in labelled containers for disposal.
 - **ALWAYS:** Wash area down with large amounts of water and prevent runoff into drains.
 - If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling
Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- **DO NOT** enter confined spaces until atmosphere has been checked.
- **DO NOT** allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

<table>
<thead>
<tr>
<th>Suitable container</th>
<th>Polyethylene or polypropylene container.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage compatibility</td>
<td>Avoid reaction with oxidising agents</td>
</tr>
</tbody>
</table>

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>diazinon</td>
<td>Diazinon</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Sk</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyrethrins I</td>
<td>Pyrethrin 1; (Cyclopropaneacrylic acid, 2,2-dimethyl-3-(2-methylpropenyl)-, ester with 4-hydroxy-3-methyl-2-(2,4-pentadienyl)-2-cyclopenten-1-one)</td>
<td>3 mg/m³</td>
<td>8.6 mg/m³</td>
<td>51 mg/m³</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>Piperonyl butoxide</td>
<td>1.2 mg/m³</td>
<td>13 mg/m³</td>
<td>1200 mg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>pyrethrins I</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>pyrethrins II</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

MATERIAL DATA

Continued...
For pyrethrum and its active components:
IDLH Level: 5000 mg/m³
Pyrethrum and/or its active components, the pyrethrins, cause dermatitis and sensitisation. Ingestion of massive doses can induce convulsions, vomiting and bradycardia. Animals exhibit liver damage and death through respiratory failure. The recommended TLV-TWA is equivalent to an occupational dose of 0.7 mg/kg/day and is thought to minimise the potential for systemic effects. The TLV may NOT prevent the development of hypersensitisation, particularly among those with pre-existing allergies to pollen and related agents. Synthetic pyrethrins (pyrethroids) often produce a range of toxic effects resembling pyrethrum; in the absence of a regulated exposure limit prudence dictates that the value for pyrethrum serves as a reference.

The recommended TLV-TWA for diazinon is the same as that of parathion. Exposure at or below this value is thought to protect workers from the significant risk of cholinesterase inhibition, weakness, headache, nausea, and vomiting

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after

Continued...
workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocautchouc.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Thermal hazards

Not Available

Respiratory protection

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>A-AUS P2</td>
<td>-</td>
<td>A-PAPR-AUS / Class 1 P2</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>-</td>
<td>A-AUS / Class 1 P2</td>
<td>-</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>A-2 P2</td>
<td>A-PAPR-2 P2 ^</td>
</tr>
</tbody>
</table>

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Brown powder with a distinct odour; does not mix with water.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Relative density</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient</td>
<td>n-octanol / water</td>
</tr>
</tbody>
</table>
SECTION 10 STABILITY AND REACTIVITY

Reactivity See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions See section 7

Conditions to avoid See section 7

Incompatible materials See section 7

Hazardous decomposition products See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Ingestion Accidental ingestion of the material may be damaging to the health of the individual.

Skin Contact The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Chronic Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on...
animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazinon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rat) LD50: 180 mg/kg<sup>[2]</sup></td>
<td>Eye (rabbit): 100 mg - SEVERE</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 3.5 mg/L4h<sup>[2]</sup></td>
<td>Skin (rabbit):500mg(open)-moderate</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 66 mg/kgE<sup>[2]</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrethrin I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 260 mg/kgE<sup>[2]</sup></td>
<td>Nil reported</td>
<td></td>
</tr>
<tr>
<td>Pyrethrin II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 200 mg/kgE<sup>[2]</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperonyl butoxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rat) LD50: >7950 mg/kg<sup>[2]</sup></td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: >5.9 mg/l4 h<sup>[1]</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 5630 mg/kg<sup>[1]</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. * Value obtained from manufacturer's SDS.

Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

For diazinon:

Acute toxicity: The toxicity of encapsulated formulations is relatively low because diazinon is not released readily while in the digestive tract. Some formulations of the compound can be degraded to more toxic forms. This transformation may occur in air, particularly in the presence of moisture, and by ultraviolet radiation. Most modern diazinon formulations in the U.S. are stable and do not degrade easily. The symptoms associated with diazinon poisoning in humans include weakness, headaches, tightness in the chest, blurred vision, nonreactive pinpoint pupils, salivation, sweating, nausea, vomiting, diarrhea, abdominal cramps, and slurred speech. Death has occurred in some instances from both dermal and oral exposures at very high levels.

Chronic toxicity: Chronic effects have been observed at doses ranging from 10 mg/kg/day for swine to 1000 mg/kg/day for rats. Inhibition of red blood cell cholinesterase, and enzyme response occurred at lower doses in the rats. Enzyme inhibition has been documented in red blood cells, in blood plasma, and in brain cells at varying doses and with different species.

Teratogenic effects: The data on teratogenic effects due to chronic exposure are inconclusive. One study has shown that injection of diazinon into chicken eggs resulted in skeletal and spinal deformities in the chicks. Bobwhite quail born from eggs treated in a similar manner showed skeletal deformities but no spinal abnormalities. Acetylcholine was significantly affected in this latter study. Tests with hamsters and rabbits at low doses (0.125 0.25 mg/kg/day) showed no developmental effects, while tests with dogs and pigs at higher levels (1.0 10.0 mg/kg/day) revealed gross abnormalities. Inhibition has been documented in red blood cells, in blood plasma, and in brain cells at varying doses and with different species.

Mutagenic effects: While some tests have suggested that diazinon is mutagenic, current evidence is inconclusive.

Carcinogenic effects: Diazinon is not considered carcinogenic. Tests on rats over a 2-year period at moderate doses (about 45 mg/kg) did not cause tumor development in the test animals.

Organ toxicity: Diazinon itself is not a potent cholinesterase inhibitor. However, in animals, it is converted to diazoxon, a compound that is a strong enzyme inhibitor.

Fate in humans and animals: Metabolism and excretion rates for diazinon are rapid. The half-life of diazinon in animals is about 12 hours. The product is passed out of the body through urine and in the feces. The metabolites account for about 70% of the total amount excreted. Cattle exposed to diazinon may store the compound in their fat over the short term. One study showed that the compound cleared the cows within 2 weeks after spraying stopped. Application of diazinon to the skin of cows resulted in trace amounts in milk 24 hours after the application.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Reproductive effector ADI: 0.001 mg/kg/day NOEL: 0.1 mg/kg/day
NOTE: Studies with rats and mice indicate rapid oxidation of pyrethrin I. Within 48 hrs, metabolites appear in urine (46%) and in expired CO2 (0.3%) (1). Some unmetabolised substance is found in faeces (2).

PYRETHRIN II

? (human) LDL: 1029 mg/kg pp 352-355 NOTE: Studies with rats and mice indicate rapid oxidation of pyrethrin II. Within 48 hrs, metabolites appear in urine (7%) and in expired CO2 (53%) (1). The analogue, pyrethrin I, in contrast, is mostly excreted in urine with a small percentage (0.3%) found in expired CO2. In common with pyrethrin I unmetabolised substance is found in faeces; some partially metabolised product is also eliminated in this fashion. (2,3). Pyrethrin II may cause contact allergic dermatitis in those individuals sensitive to ragweed pollen (3) (3). Gosselin etal; Clinical Toxicology etc. Williams Wilkins

PIPERONYL BUTOXIDE

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.
Evidence of carcinogenicity may be inadequate or limited in animal testing.
Dermal (rabbit) LD50: >1880 mg/kg [Handbook of Toxicology] *Published value - probably not peer-reviewed ADI: 0.03 mg/kg

For pyrethrins

The term "pyrethrin" refers to all six isomers found in pyrethrum, extracts which are obtained from the dried and ground flowers of the pyrethrum plant, Chrysanthemum cinerariaefolium. The CAS Registry No. for the mixture is 8003-34-7. The individual isomers are referred to by the common names of the acid followed by an Arabic number 1 or 2 (i.e., pyrethrin 1, pyrethrin 2, cinerin 1, cinerin 2, jasmolin 1, jasmolin 2). If the term pyrethrins is followed by a roman numerical designation, than it refers to all of the isomers of that number in the pyrethrum extract (e.g., pyrethrins I includes pyrethrin 1, cinerin 1, and jasmolin 1).

Pyrethrins have low to moderate acute toxicity via the oral, dermal, and inhalation routes. Mammalian toxicity data suggest that pyrethrins are slightly toxic to small mammals on an acute oral basis (LD50 = 700 mg/kg body weight).

They are a moderate eye irritant, a mild dermal irritant, and are not skin sensitisers.

Toxic Effects

The critical toxicological effects of pyrethrins are

- neurobehavioral effects (tremors, labored breathing, hyperactivity, secretory signs, matted coats), following acute, short-term, and chronic exposure, with nervous system lesions observed in the rat and mouse following acute exposure;
- thyroid effects, following chronic exposure in the rat and dog; and
- liver effects, following short- and long-term exposure in the rat, dog, and mouse.

Following inhalation exposure, neurobehavioral effects were observed initially, and respiratory tract lesions were observed at all dose levels. The neurobehavioral effects and the mode of action on the sodium channel are considered relevant to humans because the effects are observed in both the rat and mouse, and the mode of action affects a basic function of the nervous system that is common to all animals.

Toxic Mixtures Effects: The U.S.EPA considered the possibility for increased toxicity due to the presence of synergists such as MGK-264 and piperonyl butoxide in pyrethrins formulations. In order for synergistic effects to be observed in humans, absorbed doses high enough to significantly affect the mixed function oxidase enzymes would be required. It is unlikely that these levels would occur based on the registered uses of pyrethrins.

Neurotoxicity: There is a concern for neurotoxicity resulting from exposure to pyrethrins, based on

- tremors in female rats, decreased motor activity in male rats, and neuropathology in both sexes in a rat acute neurotoxicity study;
- clinical signs (excessive salivation and head arched backward) in a female rabbit following exposure during gestation; and
- tremors in female rats in a subchronic inhalation study.

In the range-finding developmental toxicity studies in rats and rabbits, tremors/convolusions were observed in those that died during the study. In the mouse 90-day range-finding study, tremors and increased/decreased activity were observed at dose levels that also resulted in mortality. Pyrethrins are axonic poisons.

Reproductive toxicity: In the two generation rat reproduction study, parental male systemic and reproductive toxicity were detected at 1000 ppm (65 mg/kg body weight per day) and parental female systemic toxicity was detected at 3000 ppm (196 mg/kg body weight per day). The NOAEL for parental systemic (male) and reproductive toxicity was 100 ppm (6.4 mg/kg body weight/day).

Cancer: Pyrethrins are classified as "Suggestive Evidence of Carcinogenicity, but Not Sufficient to Assess Human Carcinogenic Potential," based on the weight-of-the-evidence including

- the occurrence of benign liver tumors in female rats;
- no treatment-related increase in liver tumors in male rats;
- no treatment-related increase in tumors in either sex of mice, and
- no concern for mutagenicity.

Endocrine disruption: There is evidence that pyrethrins are associated with endocrine disruption. Direct measurements of serum thyroid hormones [T3, T4, and TSH], as well as histopathological alterations in the thyroid (i.e. follicular cell hyperplasia, follicular cell adenomas and/or carcinomas) indicate there is concern regarding the potential for endocrine disruption. When the appropriate screening and/or testing protocols have been developed, pyrethrins may be subject to additional screening and/or testing.

Pyrethrins and pyrethroids: Pyrethrins are botanical insecticides that come from the pyrethrum flower, Chrysanthemum cinerariaefolium. Pyrethrins have limitations because of the cost of production and instability in sunlight; therefore, many synthetic pyrethrins-like compounds were developed to be more stable in sunlight and cost effective. These compounds are referred to as synthetic pyrethroids. Although all pyrethroids interact with sodium channels, there are multiple types of sodium channels and it is currently unknown whether the pyrethrins and pyrethroids have similar effects on all channels.

The synergist, piperonyl butoxide, does not enhance the acute toxicity of the substance

(1). Hutson D.H; Progress in Drug Metabolism 3:215-252 1979

(2). Hayes W.J.; Pesticide Studies in Man William Wilkins pp 75-80

Continued...
Acute Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.397mg/L</td>
<td>3</td>
</tr>
<tr>
<td>diazinon</td>
<td>BCF</td>
<td>48</td>
<td>Fish</td>
<td>0.37mg/L</td>
<td>4</td>
</tr>
<tr>
<td>diazinon</td>
<td>EC50</td>
<td>504</td>
<td>Crustacea</td>
<td>0.00000002mg/L</td>
<td>4</td>
</tr>
<tr>
<td>diazinon</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.0000072mg/L</td>
<td>4</td>
</tr>
<tr>
<td>diazinon</td>
<td>NOEC</td>
<td>24</td>
<td>Crustacea</td>
<td>0.00003mg/L</td>
<td>4</td>
</tr>
<tr>
<td>diazinon</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.000026mg/L</td>
<td>5</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.024mg/L</td>
<td>3</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.032mg/L</td>
<td>3</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.042mg/L</td>
<td>3</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.084mg/L</td>
<td>3</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.200mg/L</td>
<td>3</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.205mg/L</td>
<td>3</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.1mg/L</td>
<td>4</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>NOEC</td>
<td>48</td>
<td>Crustacea</td>
<td>0.01mg/L</td>
<td>4</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>EC50</td>
<td>96</td>
<td>Crustacea</td>
<td>0.23mg/L</td>
<td>2</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>0.85mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend:
- `•` Data available but does not fill the criteria for classification
- `•••` Data required to make classification available
- `••••` Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

- **Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.**
- **Toxic to bees.**
- **DO NOT discharge into sewer or waterways.**

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>MEDIUM (BCF = 540)</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>HIGH (LogKOW = 5.9)</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>MEDIUM (LogKOW = 4.3)</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>HIGH (LogKOW = 4.75)</td>
</tr>
</tbody>
</table>
Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>LOW (KOC = 1337)</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>LOW (KOC = 10460)</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>LOW (KOC = 3027)</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>LOW (KOC = 69.74)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

<table>
<thead>
<tr>
<th>Product / Packaging disposal</th>
<th>Recycle wherever possible or consult manufacturer for recycling options.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consult State Land Waste Management Authority for disposal.</td>
</tr>
<tr>
<td></td>
<td>Bury residue in an authorised landfill.</td>
</tr>
<tr>
<td></td>
<td>Recycle containers if possible, or dispose of in an authorised landfill.</td>
</tr>
</tbody>
</table>

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZCHEM</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

Diazinon (333-41-5) is found on the following regulatory lists
- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

Pyrethrin I (121-21-1) is found on the following regulatory lists
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)

Pyrethrin II (121-29-9) is found on the following regulatory lists
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)

Piperonyl butoxide (51-03-6) is found on the following regulatory lists
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (diazinon; pyrethrin I; piperonyl butoxide; pyrethrin II)</td>
</tr>
<tr>
<td>China - IECCSC</td>
<td>N (pyrethrin I; pyrethrin II)</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (pyrethrin I; pyrethrin II)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>N (pyrethrin I; pyrethrin II)</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>N (pyrethrin I)</td>
</tr>
</tbody>
</table>
SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC—TWA: Permissible Concentration-Time Weighted Average
PC—STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.