SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>WSD Mulesing Powder Wound Dressing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

<table>
<thead>
<tr>
<th>Relevant identified uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound dressing after marking, mulesing and de-horning. Not to be used for any purpose other than that stated on the label.</td>
</tr>
</tbody>
</table>

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>WSD Agribusiness Pty Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>7 Koojan Avenue South Guildford WA 6055 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 8 9321 2888</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 8 9479 4088</td>
</tr>
<tr>
<td>Website</td>
<td>Not Available</td>
</tr>
<tr>
<td>Email</td>
<td>contact@wsdagribusiness.com</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Carcinogenicity Category 1B, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3</td>
</tr>
</tbody>
</table>

Legend:

Hazard pictogram(s)

SIGNAL WORD
DANGER

Hazard statement(s)

H350 May cause cancer.

H412 Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P201 Obtain special instructions before use.

P281 Use personal protective equipment as required.

P273 Avoid release to the environment.

Precautionary statement(s) Response

P308+P313 IF exposed or concerned: Get medical advice/attention.

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>333-41-5</td>
<td>1.5</td>
<td>diazinon</td>
</tr>
<tr>
<td>121-21-1</td>
<td>0-0.1</td>
<td>pyrethrin I</td>
</tr>
<tr>
<td>121-29-9</td>
<td>0-0.1</td>
<td>pyrethrin II</td>
</tr>
<tr>
<td>51-03-6</td>
<td>0.08</td>
<td>piperonyl butoxide</td>
</tr>
<tr>
<td>Balance</td>
<td></td>
<td>other ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
Indication of any immediate medical attention and special treatment needed

> Seek medical advice.

Atropine sulfate, usually in doses of 600 microgram may be given intravenously, intramuscularly, or subcutaneously to control the muscarinic effects of choline esterase inhibitors. Supportive treatment may be required.

MARTINDALE: The Extra Pharmacopoeia, Twenty-ninth Edition

While other antimuscarinic agents (e.g., scopolamine) can counteract the effects of cholinesterase inhibitors, their inherent toxic effects in patients who do not have cholinesterase inhibitor poisoning have led to their rejection in favor of atropine. Glycopyrrolate in doses of 1-2 mg, I.V., (0.025 mg/kg in children) has been suggested as an alternative to atropine, and is said to have fewer CNS side effects. However, its use has not been extensively evaluated.

Atropine works by competitively occupying muscarinic receptor sites, thus reducing the effects of excessive acetylcholine on these sites brought about by cholinesterase inhibition.

Atropine is not thought to have significant effect on nicotinic receptors, and thus does not counteract fasciculations, weakness, or flaccid paralysis.

Thus, even when given sufficient doses of atropine, patients may need artificial ventilation, sometimes for weeks.

A number of authors have recommended the “atropine challenge” as an aid to diagnosis. When given to a normal person who has not been exposed to cholinesterase inhibitors, a 2 mg dose of atropine (0.025-0.050/kg in pediatric cases) causes:

- A dry mouth.
- An increase in heart rate of about 35 beats/minute (which is usually not noticed by the recipient) within 3-5 minutes of an I.V. dose, and a maximal increase in heart rate of about 35-45 beats/minute with I.M. or autoinjector administration, respectively, within about 35-45 minutes (the longer being with I.M. injection).
- Blurred near-vision.
- Dry, hot skin.
- Mydriasis (pupillary dilation).

Most of these effects will dissipate within 4-6 hours, except blurred near-vision which may persist for 24 hours.

It has been suggested that when these physiological changes do not occur with this dose (sometimes referred to as an atropine challenge), this is indicative of cholinesterase inhibitor toxicity.

Cautions

- If miosis (pupillary constriction) is due to direct conjunctival vapor exposure, it is relatively unresponsive to parenteral atropine. Although, it does respond to topical administration.
- In 2-13% of cases of cholinesterase inhibitor toxicity, mydriasis (pupillary dilation) --- rather than miosis (pupillary constriction), and tachycardia --- rather than bradycardia (3-77% of cases), may be a presenting sign.
- One author points out that this strategy has never been empirically tested and may not be very sensitive or specific (Parenteral atropine is not generally recommended for those whose sole manifestation of toxicity is miosis (pupillary constriction)).
- Some cases of mild to moderate poisonings may improve with these doses of atropine. Thus, signs of atropinization do not always exclude the presence of cholinesterase inhibitor toxicity.

In approximate order of preference, the following routes of administration can be used for the administration of atropine

1. Intravenous: bolus, followed by I.V. drip.
2. Intramuscular: (American Heart Association 2005) bolus, followed by continuous infusion.
3. Military MARK I atropine autoinjector: Although Intravenous injection is the preferred route of administration, use of the autoinjector may be more practical in the field, where it can be rapidly administered even through clothing.) Blood levels are achieved more rapidly than by other forms of IM injection. Note that each MARK I kit contains an atropine autoinjector, containing 2 mg of atropine plus another autoinjector containing 600 mg of 2-PAM. Paediatric atropine autoinjector syringes are available in 0.5 mg and 1 mg sizes.
4. Intramuscular: Research for this Case Study did not turn up any comparisons of intramuscular with inhalation routes of atropine administration.
5. Intratracheal: by nebulised inhalation or via the intratracheal route. The intratracheal route can be used, but absorption is notably less complete and less reliable than the intravenous or intraosseous routes, which are preferred. The optimal intratracheal dose is unknown, but is typically administered in an amount 2-2½ times the intravenous dose. The American Heart Association recommends that the dose be diluted in 5-10 ml water or normal saline.
6. Oral: use has been reported after I.V. administration became unnecessary.
7. Ophthalmic: Anticholinergic eye drops (e.g., atropine or homatropine) have been recommended for severe eye pain caused by miosis (pupillary constriction), and secondary reflex nausea and vomiting, but may result in blurred vision. However, one author questions whether there is enough evidence to recommend this practice.

Tachycardia should not be used as an end-point, because it sometimes is a nicotinic manifestation of toxicity.

Resolution of miosis [Miosis has been defined as pupillary diameter of <3 mm in the dark, along with sluggish or absent response to light!] should not be used as an end-point, because:

- Miosis (pupillary constriction) from systemic exposure may be a late finding.
- When miosis pupillary constriction) is present, it may be resistant to systemic atropine therapy.
- Miosis (pupillary constriction) may reflect only localized ophthalmic exposure to vapor without systemic effects.
- Pupils are of normal size in a significant minority of poisoned patients (20% in one series).
- Toxic patients may present with mydriasis (pupillary dilation) due to occasional dominance of nicotinic effects from cholinesterase inhibitors.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Continued...
Special hazards arising from the substrate or mixture

| Fire Incompatibility | None known. |

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- **DO NOT** approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Solid which exhibits difficult combustion or is difficult to ignite.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion.
- Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can also be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- **CAUTION:** Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- **IF DRY:** Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. **IF WET:** Vacuum/shovel up and place in labelled containers for disposal.
- **ALWAYS:** Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

HAZCHEM
- Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills
- Environmental hazard - contain spillage.
 - Remove all ignition sources.
 - Clean up all spills immediately.
 - Avoid contact with skin and eyes.
 - Control personal contact with the substance, by using protective equipment.
 - Use dry clean up procedures and avoid generating dust.
 - Place in a suitable, labelled container for waste disposal.

Major Spills
- Environmental hazard - contain spillage.
 - Moderate hazard.
 - **CAUTION:** Advise personnel in area.
 - Alert Emergency Services and tell them location and nature of hazard.
 - Control personal contact by wearing protective clothing.
 - Prevent, by any means available, spillage from entering drains or water courses.
 - Recover product wherever possible.
 - **IF DRY:** Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. **IF WET:** Vacuum/shovel up and place in labelled containers for disposal.
 - **ALWAYS:** Wash area down with large amounts of water and prevent runoff into drains.
 - If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE
Precautions for safe handling

Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility
- Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>INGREDIENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrethrin I (Cyclopropaneacrylic acid, 2,2-dimethyl-3-(2-methylpropenyl)-, ester with 4-hydroxy-3-methyl-2-(2,4-pentadienyl)-2-cyclopenten-1-one)</td>
<td>3 mg/m3</td>
<td>8.6 mg/m3</td>
<td>51 mg/m3</td>
<td></td>
</tr>
<tr>
<td>Piperonyl butoxide</td>
<td>6.5 mg/m3</td>
<td>72 mg/m3</td>
<td>1,200 mg/m3</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

For pyrethrum and its active components:

IDLH Level: 5000 mg/m3

Pyrethrum and/or its active components, the pyrethrins, cause dermatitis and sensitisation. Ingestion of massive doses can induce convulsions, vomiting and bradycardia. Animals exhibit liver damage and death through respiratory failure. The recommended TLV-TWA is equivalent to an occupational dose of 0.7 mg/kg/day and is thought to minimise the potential for systemic effects. The TLV may NOT prevent the development of hypersensitisation, particularly among those with pre-existing allergies to pollen and related agents.

Synthetic pyrethrins (pyrethroids) often produce a range of toxic effects resembling pyrethrum; in the absence of a regulated exposure limit prudence dictates that the value for pyrethrum serves as a reference.

The recommended TLV-TWA for diazinon is the same as that of parathion. Exposure at or below this value is thought to protect workers from the
significant risk of cholinesterase inhibition, weakness, headache, nausea, and vomiting

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

1. Process controls which involve changing the way a job activity or process is done to reduce the risk.
2. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
3. Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of:

- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

Skin protection

See Hand protection below

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:
- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocautouchu.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection
See Other protection below

Other protection
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Respiratory protection

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the “Exposure Standard” (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>A-AUS P2</td>
<td>-</td>
<td>A-PAPR-AUS / Class 1 P2</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>-</td>
<td>A-AUS / Class 1 P2</td>
<td>-</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>A-2 P2</td>
<td>A-PAPR-2 P2 ^</td>
</tr>
</tbody>
</table>

^ - Full-face
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement...
data, and frequency and likelihood of the worker’s exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Brown powder with a distinct odour; does not mix with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Chemical stability
- See section 7

Possibility of hazardous reactions
- See section 7

Conditions to avoid
- See section 7

Incompatible materials
- See section 7

Hazardous decomposition products
- See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Chronic

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

<table>
<thead>
<tr>
<th>WSD Mulesing Powder Wound Dressing</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

- **Diazinon**
 - TOXICITY: dermal (rat) LD50: 180 mg/kg\(^2\)
 - IRRITATION: Eye (rabbit): 100 mg - SEVERE
 - Inhalation (rat) LC50: 3.5 mg/l/4h\(^2\)
 - Skin (rabbit):500mg(open)-moderate
 - Oral (rat) LD50: 66 mg/kg\(^2\)

- **Pyrethrin I**
 - TOXICITY: Oral (rat) LD50: 260 mg/kg\(^2\)
 - IRRITATION: Not Available

- **Pyrethrin II**
 - TOXICITY: Oral (rat) LD50: 200 mg/kg\(^2\)
 - IRRITATION: Not Available

- **Piperonyl Butoxide**
 - TOXICITY: dermal (rat) LD50: >7950 mg/kg\(^2\)
 - IRRITATION: Not Available
 - Inhalation (rat) LC50: >5.9 mg/l/4 h\(^1\)
 - Oral (rat) LD50: 5630 mg/kg\(^1\)

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity
2. Value obtained from manufacturer's SDS.

Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Diazinon

Acute toxicity: The toxicity of encapsulated formulations is relatively low because diazinon is not released readily while in the digestive tract. Some formulations of the compound can be degraded to more toxic forms. This transformation may occur in air, particularly in the presence of moisture, and by ultraviolet radiation. Most modern diazinon formulations in the U.S. are stable and do not degrade easily. The symptoms associated with diazinon poisoning in humans include weakness, headaches, tightness in the chest, blurred vision, nonreactive pinpoint pupils, salivation, sweating, nausea, vomiting, diarrhea, abdominal cramps, and slurred speech. Death has occurred in some instances from both dermal and oral exposures at very high levels.

Chronic toxicity: Chronic effects have been observed at doses ranging from 10 mg/kg/day for swine to 1000 mg/kg/day for rats. Inhibition of red blood cell cholinesterase, and enzyme response occurred at lower doses in the rats. Enzyme inhibition has been documented in red blood cells, in blood plasma, and in brain cells at varying doses and with different species.

Teratogenic effects: The data on teratogenic effects due to chronic exposure are inconclusive. One study has shown that injection of diazinon into chicken eggs resulted in skeletal and spinal deformities in the chicks. Bobwhite quail born from eggs treated in a similar manner showed skeletal deformities but no spinal abnormalities. Acetylcholine was significantly...
affected in this latter study. Tests with hamsters and rabbits at low doses (0.125 0.25 mg/kg/day) showed no
developmental effects, while tests with dogs and pigs at higher levels (1.0 10.0 mg/kg/day) revealed gross abnormalities.

Mutagenic effects: While some tests have suggested that diazinon is mutagenic, current evidence is inconclusive.

Carcinogenic effects: Diazinon is not considered, by many, to be carcinogenic. Tests on rats over a 2-year period at
moderate doses (about 45 mg/kg) did not cause tumour development in the test animals.

However an IARC Working Group has classified diazinon as "Possibly Carcinogenic to Humans" (Group 2A, 2016).

They did so on the basis that there is strong evidence that diazinon can operate through two key characteristics of known
human carcinogens and that these can be operative in humans. Specifically:

· There is strong evidence that exposure to diazinon is genotoxic, from studies in experimental animals in
 vivo, and in studies in animal cell lines. In addition, studies in human cell lines in vitro show effects on
 chromosomal damage; this demonstrates that this mechanism can operate in humans. Additional support for
 human relevance is provided by positive results in a study of a small number of volunteers exposed to diazinon.

· There is also strong evidence that diazinon can act to induce oxidative stress. This evidence is from
 studies in experimental animals in vivo, and studies in human and animal cell lines in vitro. This mechanism has
 been challenged experimentally by administering antioxidants, treatment that abrogated the effects of diazinon on
 oxidative stress.

In its evaluation of the epidemiological studies reporting on cancer risks associated with exposure to diazinon, the Working
Group identified 9 reports from 3 cohort studies, and 14 reports on 6 case-control studies, that reported on associations
between cancer and exposure to diazinon specifically. Several large studies each provided multiple reports, notably the
Agricultural Health Study cohort, case-control studies in the midwest USA, and the Cross-Canada Case-control Study of
Pesticides and Health, which were considered to be key studies for the evaluation because of relatively large study size
and because individual information was provided on specific pesticide exposures. Reports from more than two
independent studies were available for non-Hodgkin lymphoma (NHL) and leukaemia. For cancers of the lung, breast, and
prostate, results from two independent studies were available. For cancers of the colorectum, melanoma, bladder, kidney,
multiple myeloma, Hodgkin lymphoma, soft tissue sarcoma, brain in childhood or in adults, stomach, and oesophagus,
results from a single study for each cancer site were available for evaluation.

Organ toxicity: Diazinon itself is not a potent cholinesterase inhibitor. However, in animals, it is converted to diazoxon, a
compound that is a strong enzyme inhibitor.

Fate in humans and animals: Metabolism and excretion rates for diazinon are rapid. The half-life of diazinon in animals is
about 12 hours. The product is passed out of the body through urine and in the feces. The metabolites account for about
70% of the total amount excreted. Cattle exposed to diazinon may store the compound in their fat over the short term.

One study showed that the compound cleared the cows within 2 weeks after spraying stopped. Application of diazinon to
the skin of cows resulted in trace amounts in milk 24 hours after the application

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure
to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis
(nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis.

Histologically there may be intercellular oedema of the spongyl layer (spongiosis) and intracellular oedema of the
epidermis.

For dithiophosphate alkyl esters and their (zinc) salts:

Acute toxicity: Dithiophosphate alkyl esters consist of a phosphorodithioic acid structure with alkyl ester substituent
groups. The alkyl groups are saturated hydrocarbon chains that vary in length and extent of branching. While corrosive to
the esters demonstrate a low concern for acute systemic toxicity. Data on acute mammalian toxicity of zinc
dialkyldithiophosphates in highly refined lubricant base oil also indicate a low concern for acute toxicity. Commercial
oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute oral toxicity. The acute oral
LD50 for these studies in rats ranged from 2000-3500 mg/kg. Clinical signs observed following treatment included
diarrhea, lethargy, reduced food consumption, and staining about the nose and eye. Plosis, piloerection, ataxia and
salivation were occasionally observed. The incidence and severity of these symptoms were proportional to the dose. In
many cases the effects were found to be reversible during observation week 2. Necropsy findings were few in number.

Lung congestion, gastrointestinal irritation and a reduction in body fat were observed in some animals.

Acute dermal toxicity and irritation studies using the ester on experimental animals resulted in severe dermal irritation
and corrosivity. There is minimal opportunity of human exposure to the chemicals in this category. Dithiophosphate alkyl
esters exhibit extreme corrosive properties on skin.

Commercial oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute dermal toxicity.

The acute dermal LD50s for these studies in rabbits were greater than 2000 mg/kg (limit tests). No treatment-related
mortality was observed at doses ranging from 2000-8000 mg/kg. Dermal application of the test materials to abraded skin
for 24 hours typically produced moderate-to-severe erythema and edema, which in some cases persisted through the
14-day observation period. Clinical signs included varying degrees of reduced food consumption, weight loss, diarrhea,
lethargy, ataxia, ptosis, motor incoordination and/or loss of righting reflex. There were no remarkable gross necropsy
observations. Overall, the acute dermal LD50 for these substances were greater than 2000 mg/kg indicative of a
relatively low order of lethal toxicity. Zinc dialkyldithiophosphates are high molecular weight components (average > 500
gm/mol), which generally accepted that the molecular weight limit for passive transport across biological membranes.

Thus, upon exposure it is unlikely that significant amounts of these components will be absorbed for systemic distribution.

In addition, these materials have a low water solubility that further inhibits absorption and distribution in the mammalian
system.

The negligible vapor pressure and high viscosity at ambient temperature indicates that these materials are unlikely to
represent an inhalation exposure under conditions of use.

Repeat dose toxicity: Data from several repeated-dose toxicity studies using commercial samples of zinc
dialkyldithiophosphates in highly refined lubricant base oil has been reviewed. Repeated dermal exposure to experimental
animals resulted in moderate-to-severe dermal irritation, behavioral distress, body weight loss and emaciation, reduction in
hematological parameters and adverse effects on male reproductive organs. These effects were observed across several
members of the category with carbon chain lengths ranging from C4-8. There was no evidence that the incremental increase in carbon chain length or molecular weight could be correlated with significant changes in toxicity parameters. Oral administration caused significant gastric irritation and related gastrointestinal disturbances, signs of distress but with no evidence of adverse effects on male reproductive organs.

Reproductive toxicity: An epidemiological study on workers exposed to oil-based zinc dialkyldithiophosphates (range C4-8) in an additive manufacturing plant revealed no adverse effects on worker reproductive health. Review of the available information underscores the similarity of clinical and pathological findings in repeated-dose dermal toxicity studies with C4-10 zinc dialkyldithiophosphates, as well as the absence of reproduction and developmental toxicity and the lack of untoward findings in a human epidemiological investigation. Reproductive organ effects, following dermal application, have been observed in male rabbits; these are attributed to the stress associated with the severe dermal responses to the test material, rather than direct a systemic response to the test materials. Changes in male reproductive organs in the rabbit have been observed when other irritating substances are applied to the skin at dose levels that cause skin lesions. Thus, dermal irritation alone, or in combination with the accompanying weight loss and stress, is thought to play a role in the reproductive organ response to repeated cutaneous application of zinc dialkyldithiophosphates.

Mutagenicity: Findings indicate that commercial samples of zinc dialkyldithiophosphates in highly refined lubricant base oil have a small potential for inducing genetic toxicity. In vitro bacterial gene mutation assays, in vitro mammalian gene mutation assays, or in vivo chromosomal aberration assays have been conducted. Frequencies of reverse mutations in bacteria were not significantly changed after exposure to the zinc dialkyldithiophosphates. In vitro mutation studies in mammalian cells indicate that the zinc dialkyldithiophosphates do not consistently display mutagenic activity in the absence of metabolic activation. However, the weight of evidence (2 studies positive, 1 study negative) indicates that metabolic activation of zinc dialkyldithiophosphates by induced hepatic microsomal enzymes results in a significant increase in the mutagenic potential of this class of chemical substances.

WARNING: This substance has been classified by the IARC as Group 3: Not classifiable as to its carcinogenicity to humans.

Reproductive effector ADI: 0.001 mg/kg/day NOEL: 0.1 mg/kg/day

PYRETHRIN I

NOTE: Studies with rats and mice indicate rapid oxidation of pyrethrin I. Within 48 hrs. metabolites appear in urine (46%) and in expired CO2 (0.3%) (1). Some unmetabolised substance is found in faeces (2).

PYRETHRIN II

NOTE: Studies with rats and mice indicate rapid oxidation of pyrethrin II. Within 48 hrs. metabolites appear in urine (7%) and in expired CO2 (53%) (1). The analogue, pyrethrin I, in contrast, is mostly excreted in urine with a small percentage (0.3%) found in expired CO2. In common with pyrethrin I unmetabolised substance is found in faeces; some partially metabolised product is also eliminated in this fashion. (2,3). Pyrethrin II may cause contact allergic dermatitis in those individuals sensitive to ragweed pollen (3) (3). Gosselin etal; Clinical Toxicology etc. Williams & Wilkins

PIPERONYL BUTOXIDE

The substance is classified by IARC as Group 3: Not classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Dermal (rabbit) LD50: >1880 mg/kg [Handbook of Toxicology] *Published value - probably not peer-reviewed ADI: 0.03 mg/kg

For pyrethrins

The term "pyrethrin" refers to all six isomers found in pyrethrum, extracts which are obtained from the dried and ground flowers of the pyrethrum plant, Chrysanthemum cinerariaefolium. The CAS Registry No. for the mixture is 8003-34-7. The individual isomers are referred to by the common names of the acid followed by an Arabic number 1 or 2 (i.e., pyrethrin 1, pyrethrin 2, cinerin 1, cinerin 2, jasmolin 1, jasmolin 2). If the term pyrethrins is followed by a roman numerical designation, than it refers to all of the isomer of that number in the pyrethrum extract (e.g., pyrethrins I includes pyrethrin 1, cinerin 1, and jasmolin 1).

Pyrethrins have low to moderate acute toxicity via the oral, dermal, and inhalation routes. Mammalian toxicity data suggest that pyrethrins are slightly toxic to small mammals on an acute oral basis (LD50 = 700 mg/kg body weight). They are a moderate eye irritant, a mild dermal irritant, and are not a skin sensitisers.

Toxic Effects

The critical toxicological effects of pyrethrins are:

- neurobehavioral effects (tremors, labored breathing, hyperactivity, secretory signs, matted coats), following acute, short-term, and chronic exposure, with nervous system lesions observed in the rat and mouse following acute exposure;
- thyroid effects, following chronic exposure in the rat and dog; and
- liver effects, following short- and long-term exposure in the rat, dog, and mouse.

Following inhalation exposure, neurobehavioral effects were observed initially, and respiratory tract lesions were observed at all dose levels. The neurobehavioral effects and the mode of action on the sodium channel are considered relevant to humans because the effects are observed in both the rat and mouse, and the mode of action affects a basic function of the nervous system that is common to all animals.

Toxic Mixtures Effects: The U.S.EPA considered the possibility for increased toxicity due to the presence of synergists such as MGK-264 and piperonyl butoxide in pyrethrins formulations. In order for synergistic effects to be observed in humans, absorbed doses high enough to significantly affect the mixed function oxidase enzymes would be required. It is unlikely that these levels would occur based on the registered uses of pyrethrins.

Neurotoxicity: There is a concern for neurotoxicity resulting from exposure to pyrethrins, based on:

- tremors in female rats, decreased motor activity in male rats, and neuropathology in both sexes in a rat acute neurotoxicity study;
clinical signs (excessive salivation and head arched backward) in a female rabbit following exposure during gestation; and
tremors in female rats in a subchronic inhalation study.

In the range-finding developmental toxicity studies in rats and rabbits, tremors/convulsions were observed in those that died during the study. In the mouse 90-day range-finding study, tremors and increased/decreased activity were observed at dose levels that also resulted in mortality. Pyrethrins are axonic poisons.

Reproductive toxicity: In the two generation rat reproduction study, parental male systemic and reproductive toxicity were detected at 1000 ppm (65 mg/kg body weight per day) and parental female systemic toxicity was detected at 3000 ppm (196 mg/kg body weight per day). The NOAEL for parental systemic (male) and reproductive toxicity was 100 ppm (6.4 mg/kg body weight-day).

Cancer: Pyrethrins are classified as “Suggestive Evidence of Carcinogenicity, but Not Sufficient to Assess Human Carcinogenic Potential,” based on the weight-of-the-evidence including
- the occurrence of benign liver tumors in female rats,
- no treatment-related increase in liver tumors in male rats,
- no treatment-related increase in tumors in either sex of mice, and
- no concern for mutagenicity.

Endocrine disruption: There is evidence that pyrethrins are associated with endocrine disruption. Direct measurements of serum thyroid hormones [T3, T4, and TSH], as well as histopathological alterations in the thyroid (i.e. follicular cell hypertrophy, follicular cell hyperplasia, follicular cell adenomas and/or carcinomas) indicate there is concern regarding the potential for endocrine disruption. When the appropriate screening and/or testing protocols have been developed, pyrethrins may be subject to additional screening and/or testing.

Pyrethrins and pyrethroids: Pyrethrins are botanical insecticides that come from the pyrethrum flower, Chrysanthemum cinerariaefolium. Pyrethrins have limitations because of the cost of production and instability in sunlight; therefore, many synthetic pyrethrins-like compounds were developed to be more stable in sunlight and cost effective. These compounds are referred to as synthetic pyrethroids. Although all pyrethroids interact with sodium channels, there are multiple types of sodium channels and it is currently unknown whether the pyrethrins and pyrethroids have similar effects on all channels. The synergist, piperonyl butoxide, does not enhance the acute toxicity of the substance (1). Hutson D.H; Progress in Drug Metabolism 3:215-252 1979 (2). Hayes W.J.; Pesticide Studies in Man William & Wilkins pp 75-80

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSD Mulesing Powder</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Wound Dressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diazinon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDPOINT</td>
<td>TEST DURATION (HR)</td>
<td>SPECIES</td>
<td>VALUE</td>
<td>SOURCE</td>
</tr>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.00072mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.00026mg/L</td>
<td>5</td>
</tr>
<tr>
<td>BCF</td>
<td>48</td>
<td>Fish</td>
<td>0.37mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC01</td>
<td>48</td>
<td>Fish</td>
<td>0.00030436mg/L</td>
<td>4</td>
</tr>
<tr>
<td>NOEC</td>
<td>24</td>
<td>Crustacea</td>
<td>0.00003mg/L</td>
<td>4</td>
</tr>
<tr>
<td>Pyrethrin I</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Pyrethrin II</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
piperonyl butoxide

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.0024mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.1mg/L</td>
<td>4</td>
</tr>
<tr>
<td>NOEC</td>
<td>48</td>
<td>Crustacea</td>
<td>0.01mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend:
- Extracted from 1. IUCLID Toxicity Data
- 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity
- 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated)
- 4. US EPA, Ecotox database - Aquatic Toxicity Data
- 5. ECETOC Aquatic Hazard Assessment Data
- 6. NITE (Japan) - Bioconcentration Data
- 7. METI (Japan) - Bioconcentration Data
- 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>MEDIUM (BCF = 540)</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>HIGH (LogKOW = 5.9)</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>MEDIUM (LogKOW = 4.3)</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>HIGH (LogKOW = 4.75)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazinon</td>
<td>LOW (KOC = 1337)</td>
</tr>
<tr>
<td>pyrethrin I</td>
<td>LOW (KOC = 10460)</td>
</tr>
<tr>
<td>pyrethrin II</td>
<td>LOW (KOC = 3027)</td>
</tr>
<tr>
<td>piperonyl butoxide</td>
<td>LOW (KOC = 69.74)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZCHEM</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVS): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code.
SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

DIAZINON (333-41-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
Australia Inventory of Chemical Substances (AICS)	Australia Work Health and Safety Regulations 2016 - Hazardous chemicals (other than lead) requiring health monitoring
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

PYRETHRIN I (121-21-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

| Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals | Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2 |
| Australia Inventory of Chemical Substances (AICS) | Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 |

PYRETHRIN II (121-29-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

| Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals | Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2 |
| Australia Inventory of Chemical Substances (AICS) | Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 |

PIPERONYL BUTOXIDE (51-03-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2
Australia Inventory of Chemical Substances (AICS)	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix B (Part 3)	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (diazinon; pyrethrin I; piperonyl butoxide; pyrethrin II)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>N (pyrethrin I; piperonyl butoxide; pyrethrin II)</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (pyrethrin I; pyrethrin II)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>N (pyrethrin I; pyrethrin II)</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>N (pyrethrin I)</td>
</tr>
</tbody>
</table>

Legend:

- **Y** = All ingredients are on the inventory
- **N** = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date

- 27/06/2017

Initial Date

- Not Available

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are...
Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC—TWA: Permissible Concentration-Time Weighted Average
PC—STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.