WSD Agribusiness Pty Ltd

Chemwatch: **35915** Version No: **6.1**

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **30/10/2020**Print Date: **13/01/2025**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	FENBENDAZOLE
Chemical Name	Not Available
Synonyms	C15-H13-N3-O2-S; 2-benzimidazolecarbamic acid, 5-(phenylthio)-, methyl ester; carbamic acid, [5-(phenylthio)-1H-benzimidazol-2-yl]-, methyl ester; [5-(phenylthio)-1H-benzimidazol-2-yl] carbamic acid, methyl ester; methyl 5-phenylthio-1H-benzimidazol-2-ylcarbamate; fenbendazol; HOE 881 Panacur; benzimidazole anthelmintic
Chemical formula	C15-H13-N3-O2-S
Other means of identification	Not Available
CAS number	43210-67-9

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Anthelmintic for sheep, goats, cattle and horses. Fenbendazole is active against Giardia in vitro (IC50 = 0.3 µM). Fenbendazole (20 mg/kg) prevents infiltration of parasites into the brain in a rabbit model of E. cuniculi infection. Fenbendazole also activates HIF-1a and prevents oxidative stress-induced death in primary neurons in vitro.

Anthelmintics or antihelminthics are a group of antiparasitic drugs that expel parasitic worms (helminths) and other internal parasites from the body by either stunning or killing them and without causing significant damage to the host. They may also be called vermifuges (those that stun) or vermicides (those that kill). Anthelmintics are used to treat people who are infected by helminths, a condition called helminthiasis. These drugs are also used to treat infected animals.

Major anthelmintic drug classes, including benzimidazoles (BZs), imidazothiazoles, macrocyclic lactones spiroindoles, tetrahydropyrimidines and aminoacetonitrile derivatives (AAD).

The relatively low cost and ease of administration of anthelmintic drugs against gastrointestinal parasitic nematodes of animals has led to their extensive use and, consequently, to the emergence of resistance

Benzimidazole, a heterocyclic aromatic organic compound consisting of a fusion of benzene and imidazole, in an extension of the well-elaborated imidazole system, has been used as a carbon skeleton for N-heterocyclic carbenes, usually used as ligand for transition metal complexes. Pharmacological compounds of benzimidazole derivatives are potent inhibitors for a variety of enzymes. Benzimidazole is a privileged scaffold (capable of binding to multiple receptors with high affinity), having a variety of therapeutic uses including antitumour, antifungal, antiparasitic, analgesics, antiviral, antihistamine, as well as use in cardiovascular disease, neurology, endocrinology, and ophthalmology.

An hypoxia-inducible factor-1 (HIF-I) modulator

Physiological and cellular responses to hypoxic stress are regulated, at least in part, by steroid signaling. At the cellular level, the pathway inhibits the normal hypoxic response which cells undergo to recruit blood vessels (e.g. inhibition of HIF-I activation, VEGF secretion and/or angiogenesis), thereby separating systematic hypoxic response from local hypoxic response. At the level of the whole organism, signaling by steroids causes physiological changes, such as reduction of heart rate and increased blood pressure. While the role of steroids as regulators of responses to hypoxia has not been previously appreciated, many of the changes affected by such molecules appear to be orchestrated in a manner that favors the survival of major organs during periods of hypoxia. For example, blood flow is redirected away from the extremities to critical organs.

Digoxin and other cardiac glycosides inhibit hypoxia-inducible factor-1 (HIF-1) transcriptional activity in cultured cells and suppress tumor xenograft growth. Digoxin suppresses retinal and choroidal neovascularization by reducing HIF-1alpha levels, which blocks several proangiogenic pathways. Since digoxin suppresses multiple pathways in addition to VEGF signaling, it may provide advantages over specific VEGF antagonists for treatment of patients with retinal and choroidal diseases complicated by neovascularization and/or excessive vascular permeability. It may also be useful for treatment of neovascular diseases in other tissues.

studies show that digoxin acts as inhibitor of HIF-1a synthesis, reduces protein levels and thus slows tumor growth in mice. Cardiac glycosides were the group of drugs showing significant inhibition of HIF-1 synthesis and expression of HIF-1 target genes in cancer cells. In vivo digoxin showed its antitumor activity in tumor xenografts model

Hypoxia is a common pathophysiological condition to which cells must rapidly respond in order to prevent metabolic shutdown and subsequent death. This is achieved via the activity of Hypoxia-Inducible Factors (HIFs), which are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen levels. Although it aims to restore tissue oxygenation and perfusion, it can sometimes be maladaptive and contributes to a variety of pathological conditions including inflammation, tissue ischemia, stroke and growth of solid tumours. In this regard, synthetic glucocorticoids which are analogous to naturally occurring steroid hormones, have been used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, rheumatoid arthritis, ischemic injury). Indeed, previous in vitro studies highlighted the presence of a crosstalk between HIF and glucocorticoids

Dysregulation (e.g. excessive or insufficient signaling) of the HIF-steroid signaling pathway could be involved in the etiology of, or contribute in a downstream fashion to, ocular disorders, such as, angiogenic ocular disease, ocular inflammation, retinopathy, retinopathy of prematurity, macular degeneration, age related macular degeneration, contact lens overwear, corneal graft rejection, corneal neovascularization, choroidal neovascularization, corneal graft neovascularization, retinal neovascularization, cortical visual impairment, epidemic keratocon junctivitis, marginal keratolysis, Mooren ulcer, myopia, pars planitis, phylectenulosis, post-laser surgery complications, pterygium, radial keratotomy, retrolental fibroplasias, ocular ischemic syndrome, retinal ischemia, ischemic optic neuropathy, non-arthritic ischemic optic neuropathy, glaucoma, neovascular

Chemwatch: 35915 Page 2 of 13
Version No: 6.1

FENBENDAZOLE

Issue Date: **30/10/2020**Print Date: **13/01/2025**

glaucoma, hypoxia related ocular surface inflammation, ocular or macular edema, ocular neovascular disease, superior limbic keratitis, Steven Johnson disease, Terrien's marginal degeneration, schleritis, radial keratotomy, uveitis, vitritis, myopia, optic pits, chronic retinal detachment, post-laser treatment complications, cataracts, cataract surgery, conjunctivitis, Stargardt's disease, Eale's disease, central retinal vein occlusion, sickle cell retinopathy, diabetic retinopathy, or any ocular disorder associated with hypotension, diabetes, angiogenic disorders, cancer (e.g., cancers of the eye), autoimmune disease (e.g., Behcet's disease), inflammatory conditions, atherosclerosis, stenosis of the carotid artery, Vitamin A deficiency, Stargardts disease, Wegeners sarcoidosis, or age-related metabolic changes.

Hypoxia provokes a wide range of physiological and cellular responses in humans and other mammals. The effects of hypoxia vary qualitatively depending on the length of time over which hypoxic conditions are maintained. Acute hypoxia is characterized by increased respiratory ventilation, but after 3- 5 minutes, ventilation declines. Individuals exposed to chronic hypoxic conditions undergo a suite of responses including decreased heart rate and increased blood pressure. Metabolically, hypoxia causes decreased glucose oxidation with a shift from oxidative phosphorylation to glycolysis. Glycolysis provides a poorer yield of energy from carbohydrates, and oxidation of fatty acids is greatly reduced. Perhaps for these reasons, hypoxia also triggers increased consumption of carbohydrates. Hypoxia stimulates production of erythropoietin, which in turn leads to an increase in the red blood cell count. Hypoxia may occur at the level of the whole organism, as, for example, when ventilation is interrupted or when oxygen availability is low. Hypoxia may also occur at a local level essentially any time oxygen consumption outpaces the supply from the bloodstream. Ischemic events are severe forms of local hypoxia that lead to cell death. Several discoveries relating to the HIF-I transcription factor have provided considerable insight into the local, cellular response to hypoxia, but our understanding of how the overall physiological response is regulated, and how the systemic and local responses might interact is more limited

HIF-I is a transcription factor and is critical to cellular survival in hypoxic conditions, both in cancer and cardiac cells. HIF-I is composed of the O2 ' " and growth factor-regulated subunit HEF- Ia, and the constitutively expressed HIF- Ibeta subunit (arylhydrocarbon receptor nuclear translocator, ARNT), both of which belong to the basic helix-loop-helix (bHLH)-PAS (PER, ARNT, SIM) protein family. In the human genome, three isoforms of the subunit of the transcription factor HIF have been identified: HIF-I, HIF-2 (also referred to as EPAS-I, MOP2, HLF, and HRF), and HIF-3 (of which HIF-32 is also referred to as IPAS, inhibitory PAS domain).

Under normoxic conditions, HIF- la is targeted for ubiquitinylation by pVHL and is rapidly degraded by the proteasome. This is triggered through post-translational HIF- 1 a hydroxylation on specific proline residues (proline 402 and 564 in human HIF- la protein) within the oxygen dependent degradation domain (ODDD), by specific HEF-prolyl hydroxylases (HPHI -3 also referred to as PHD 1-3) in the presence of iron, oxygen, and 2- oxoglutarate. The hydroxylated protein is then recognized by pVHL, which functions as an E3 ubiquitin ligase. The interaction between HIF- la and pVHL is further accelerated by acetylation of lysine residue 532 through an N- acetyltransferase (ARDI). Concurrently, hydroxylation of the asparagine residue 803 within the C-TAD also occurs by an asparaginyl hydroxylase (also referred to as FIH-I), which by its turn does not allow the coactivator p300/CBP to bind to HIF-I subunit. In hypoxic conditions, HIF- la remains not hydroxylated and does not interact with pVHL and CBP/p300. Following hypoxic stabilization, HIF- la translocates to the nucleus where it heterodimerizes with HIF- Iß. The resulting activated HIF-I drives the transcription of over 60 genes important for adaptation and survival under hypoxia including glycolytic enzymes, glucose transporters Glut-1 and Glut-3, endothelin-1 (ET-I), VEGF (vascular endothelial growth factor), tyrosine hydroxylase, transferrin, and erythropoietin

A privileged structure (capable of binding to multiple receptors with high affinity).

In order to be considered privileged, a substructure should represent a molecule s core element and make up a significant portion of its total mass.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	WSD Agribusiness Pty Ltd
Address	7 Koojan Avenue South Guildford WA 6055 Australia
Telephone	+61 8 9321 2888
Fax	+61 8 9479 4088
Website	Not Available
Email	contact@wsdagribusiness.com

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE (24/7)
Emergency telephone number(s)	+61 1800 951 288
Other emergency telephone number(s)	+61 3 9573 3188

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5
Classification ^[1]	Carcinogenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Page 3 of 13

FENBENDAZOLE

Issue Date: **30/10/2020**Print Date: **13/01/2025**

Label elements

Hazard pictogram(s)

Signal word Warnin

Hazard statement(s)

H351	Suspected of causing cancer.
H373	May cause damage to organs through prolonged or repeated exposure.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe dust/fume.
P280	Wear protective gloves and protective clothing.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.
P314	Get medical advice/attention if you feel unwell.

Precautionary statement(s) Storage

P405	Store locked up.
------	------------------

Precautionary statement(s) Disposal

P501	Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

CAS No	%[weight]	Name
43210-67-9	>=99	<u>fenbendazole</u>

Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available

Mixtures

See section above for composition of Substances

SECTION 4 First aid measures

Description of first aid measures

Description of first aid file	asules
Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation.
Inhalation	 If dust is inhaled, remove from contaminated area. Encourage patient to blow nose to ensure clear passage of breathing. If irritation or discomfort persists seek medical attention.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.

Page 4 of 13 Issue Date: 30/10/2020 Version No: 6.1 Print Date: 13/01/2025

Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- ▶ DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

Fire Fighting

- ▶ Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC).
- When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- ▶ Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- ▶ Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- ▶ All movable parts coming in contact with this material should have a speed of less than 1-meter/sec.
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source.
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2)

nitrogen oxides (NOx) sulfur oxides (SOx)

other pyrolysis products typical of burning organic material.

Page 5 of 13 Issue Date: 30/10/2020 Version No: 6.1 Print Date: 13/01/2025 **FENBENDAZOLE**

May emit poisonous fumes. **HAZCHEM** Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for o	containment and cleaning up
Minor Spills	 Clean up waste regularly and abnormal spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (H-Class HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). H-Class HEPA filtered industrial vacuum cleaners should NOT be used on wet materials or surfaces. Dampen with water to prevent dusting before sweeping. Place in suitable containers for disposal.
Major Spills	Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- ▶ Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- ▶ Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- ▶ Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static

Chemwatch: 35915 Version No: 6.1

FENBENDAZOLE

Issue Date: 30/10/2020 Print Date: 13/01/2025

charges

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- Glass container is suitable for laboratory quantities
- ▶ Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks
- Storage incompatibility
- ▶ Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Ingredient	Original IDLH	Revised IDLH
fenbendazole	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
fenbendazole	Е	≤ 0.01 mg/m³
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Airborne particulate or vapour must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

Exposure controls

Appropriate engineering controls

Enclosed local exhaust ventilation is required at points of dust, fume or vapour generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapours. Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

A fume hood or vented balance enclosure is recommended for weighing/ transferring quantities exceeding 500 mg. When handling quantities up to 500 gram in either a standard laboratory with general dilution ventilation (e.g. 6-12 air changes per hour) is preferred. Quantities up to 1 kilogram may require a designated laboratory using fume hood, biological safety cabinet, or approved vented enclosures. Quantities exceeding 1 kilogram should be handled in a designated laboratory or containment laboratory using appropriate barrier/ containment technology.

Manufacturing and pilot plant operations require barrier/ containment and direct coupling technologies.

Barrier/ containment technology and direct coupling (totally enclosed processes that create a barrier between the equipment and the room) typically use double or split butterfly valves and hybrid unidirectional airflow/ local exhaust ventilation solutions (e.g. powder containment booths). Glove bags, isolator glove box systems are optional. HEPA filtration of exhaust from dry product handling areas is required.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants

Chemwatch: 35915 Page 7 of 13
Version No: 6.1

FENBENDAZOLE

Issue Date: **30/10/2020**Print Date: **13/01/2025**

generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50- 100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

The following protective devices are recommended where exposures exceed the recommended exposure control guidelines by factors of:

10; high efficiency particulate (HEPA) filters or cartridges

10-25; loose-fitting (Tyvek or helmet type) HEPA powered-air purifying respirator.

25-50; a full face-piece negative pressure respirator with HEPA filters

50-100; tight-fitting, full face-piece HEPA PAPR

100-1000; a hood-shroud HEPA PAPR or full face-piece supplied air respirator operated in pressure demand or other positive pressure mode.

Individual protection measures, such as personal protective equipment

When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- ► Chemical googles. [AS/NZS 1337.1, EN166 or national equivalent]
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Eye and face protection

Skin protection

See Hand protection below

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- \cdot chemical resistance of glove material,
- \cdot glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

Chemwatch: 35915 Page 8 of 13

Issue Date: 30/10/2020 Version No: 6.1 Print Date: 13/01/2025 **FENBENDAZOLE**

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ▶ Rubber gloves (nitrile or low-protein, powder-free latex, latex/ nitrile). Employees allergic to latex gloves should use nitrile gloves in preference.
- ▶ Double gloving should be considered.
- PVC gloves.
- ▶ Change gloves frequently and when contaminated, punctured or torn.
- Wash hands immediately after removing gloves.
- Protective shoe covers. [AS/NZS 2210]
- ▶ Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocaoutchouc.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection

See Other protection below

Other protection

- ▶ For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- ▶ Eye wash unit.
- Ensure there is ready access to an emergency shower.
- ▶ For Emergencies: Vinyl suit

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- · The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data. and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.

Page **9** of **13** Issue Date: 30/10/2020 Print Date: 13/01/2025

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

	· ·		
Appearance	Light brownish grey, odourless, tasteless, crystalline powder; does not mix with water.		
Physical state	Divided Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	233
Melting point / freezing point (°C)	233 (dec.)	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	299.37
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Negligible
Vapour pressure (kPa)	Negligible	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Applicable	VOC g/L	Not Applicable
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.	
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual.	
Skin Contact	The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.	

[·] Try to avoid creating dust conditions.

 Chemwatch: 35915
 Page 10 of 13
 Issue Date: 30/10/2020

 Version No: 6.1
 FENBENDAZOLE
 Print Date: 13/01/2025

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause

Eye t

transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or

mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemica systems.

Chronic

Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

A number of benzimidazoles have been shown to also inhibit mammalian tubulin polymerisation and to be aneugenic *in vivo*. Aneugens affect cell division and the mitotic spindle apparatus resulting in loss or gain of whole chromosomes, thereby inducing an "aneuploidy". Mitotic aneuploidy is a characteristic of many types of tumorigenesis (in cancer). Several benzimidazoles have been shown to be genotoxic. Genotoxicity may arise as aneugens may also be clastogens, or may produce clastogenic metabolites. Clastogens increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

FENBENDAZOLE

TOXICITY IRRITATION Oral (Dog) LD50; >500 mg/kg^[2] Not Available

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

FENBENDAZOLE

Changes in serum composition recorded

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	~
Mutagenicity	×	Aspiration Hazard	×

Legend: X − Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
FENBENDAZOLE	NOEC(ECx)	504h	Crustacea	0.001mg/L	4
FENBENDAZOLE	EC50	48h	Crustacea	0.012- 0.02mg/L	4
Legend:	4. US EPA, Eco		egistered Substances - Ecotoxicological Info ETOC Aquatic Hazard Assessment Data 6. I Data 8. Vendor Data	•	tic Toxici

DO NOT discharge into sewer or waterways.

Chemwatch: 35915 Page 11 of 13 Version No: 6.1

FENBENDAZOLE

Persistence: Water/Soil Persistence: Air Ingredient No Data available for all ingredients No Data available for all ingredients **Bioaccumulative potential**

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Product / Packaging disposal

- Reduction Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
fenbendazole	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type	
fenbendazole	Not Available	

SECTION 15 Regulatory information

Issue Date: 30/10/2020

Print Date: 13/01/2025

Chemwatch: 35915 Page 12 of 13 Issue Date: 30/10/2020 Version No: 6.1 Print Date: 13/01/2025

Safety, health and environmental regulations / legislation specific for the substance or mixture

fenbendazole is found on the following regulatory lists

Australia Chemicals with non-industrial uses removed from the Australian Inventory of Chemical Substances (old Inventory)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (fenbendazole)		
China - IECSC	No (fenbendazole)		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	No (fenbendazole)		
Korea - KECI	Yes		
New Zealand - NZloC	Yes		
Philippines - PICCS	No (fenbendazole)		
USA - TSCA	No (fenbendazole)		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - FBEPH	No (fenbendazole)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	30/10/2020
Initial Date	18/09/2002

SDS Version Summary

Version	Date of Update	Sections Updated
5.1	23/07/2017	Toxicological information - Chronic Health, Hazards identification - Classification, Disposal considerations - Disposal, Handling and storage - Storage (storage requirement), Identification of the substance / mixture and of the company / undertaking - Use
6.1	30/10/2020	Toxicological information - Chronic Health, Hazards identification - Classification, Toxicological information - Toxicity and Irritation (Other), Identification of the substance / mixture and of the company / undertaking - Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard

Chemwatch: 35915 Page 13 of 13 Issue Date: 30/10/2020 Version No: 6.1 Print Date: 13/01/2025

FENBENDAZOLE

▶ OSF: Odour Safety Factor

▶ NOAEL: No Observed Adverse Effect Level

- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ▶ TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ MARPOL: International Convention for the Prevention of Pollution from Ships
- ► IMSBC: International Maritime Solid Bulk Cargoes Code
- ▶ IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ▶ NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.